kelompok

Sabtu, 03 Maret 2012

ekskresi gen dan materi genetika


EKSKRESI GEN DAN MATERI GENETIK

A. Genetik
Genetika (dari bahasa Yunani γέννω atau genno yang berarti “melahirkan”) merupakan cabang biologi yang penting saat ini. Ilmu ini mempelajari berbagai aspek yang menyangkut pewarisan sifat dan variasi sifat pada organisme maupun suborganisme (seperti virus dan prion). Ada pula yang dengan singkat mengatakan, genetika adalah ilmu tentang gen. Nama “genetika” diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.


Bidang  kajian genetika dimulai dari wilayah molekular hingga populasi (lihat entri biologi). Secara lebih rinci, genetika berusaha menjelaskan  tentang:
• material pembawa informasi untuk diwariskan (bahan genetik),
• bagaimana informasi itu diekspresikan (ekspresi genetik), dan
• bagaimana informasi itu dipindahkan dari satu individu ke individu yang lain (pewarisan genetik).

Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendel pada tahun 1900, sebetulnya kajian genetika sudah dikenal sejak masa prasejarah, seperti domestikasi dan pengembangan trah-trah murni (pemuliaan) ternak dan tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Kala itu, kajian semacam ini disebut “ilmu pewarisan” atau hereditas.

B. Cabang-Cabang Genetika
Genetika berkembang baik sebagai ilmu murni maupun ilmu terapan. Cabang-cabang ilmu ini terbentuk terutama sebagai akibat pendalaman terhadap suatu aspek tertentu dari objek kajiannya.
Cabang-cabang murni genetika :
• Genetika Molekuler
Genetika molekular merupakan cabang genetika yang mengkaji bahan genetik dan ekspresi genetik di tingkat subselular (di dalam sel). Subjek kajiannya mencakup struktur, fungsi, dan dinamika dari bahan-bahan genetika serta hasil ekspresinya.
Seringkali genetika molekular disamakan dengan biologi molekular. Hal ini tidak sepenuhnya bisa disalahkan, karena sebagai berikut :
(1) biologi molekular lahir dari kajian genetika dan,
(2) keduanya memakai teknik-teknik analisis yang sama.
Sampai sekarang pun genetika molekular masih merupakan kajian biologi molekular yang terpenting. Namun sekarang dapat dilihat bahwa biologi molekular telah merambah bidang biologi lain, khususnya fisiologi dan ekologi, dalam arti teknik-teknik biologi molekular dipakai untuk menjelaskan gejala-gejala fisiologi dan ekologi.
Genetika molekular berkembang di tahun 1930-an ketika teknik kristalografi sinar-X dikembangkan untuk mendeskripsi biomolekul. Namun umumnya orang menyebut kelahiran ilmu ini sejak publikasi model struktur DNA oleh James D. Watson dan Francis Crick (1953) di majalah Nature, berdasarkan foto-foto difraksi sinar-X dari kristal DNA yang dibuat Rosalind Franklin.
• Genetika Populasi
Genetika Populasi adalah cabang genetika yang membahas transmisi bahan genetik pada ranah populasi. Dari objek bahasannya, genetika populasi dapat dikelompokkan sebagai cabang genetika yang berfokus pada pewarisan genetik.
Ilmu ini membicarakan implikasi hukum pewarisan Mendel apabila diterapkan pada sekumpulan individu sejenis di suatu tempat. Berbeda dengan genetika Mendel, yang mengkaji pewarisan sifat untuk perkawinan antara dua individu (atau dua kelompok individu yang memiliki genotipe yang sama), genetika populasi berusaha menjelaskan implikasi yang terjadi terhadap bahan genetik akibat saling kawin yang terjadi di dalam satu atau lebih populasi.
Genetika Populasi didasarkan pada Hukum Hardy-Weinberg, yang diperkenalkan pertama kali oleh Wilhelm Weinberg (1908) dan, hampir bersamaan tetapi secara independen, Godfrey Hardy (1908).

• Genetika Kuantitatif
Cabang genetika yang membahas pewarisan sifat-sifat terukur (kuantitatif atau metrik), yang tidak bisa dijelaskan secara langsung melalui hukum pewarisan Mendel. Sifat-sifat yang tergolong sifat kuantitatif misalnya tinggi atau berat badan, hasil panen, atau produksi susu.
Genetika kuantitatif menerapkan hukum pewarisan Mendel untuk gen dengan pengaruh yang kecil/lemah (minor gene). Selain itu, diasumsikan pula bahwa tidak hanya sedikit gen yang mengendalikan suatu sifat melainkan banyak gen. Karena itu, sifat kuantitatif sering dasamakan dengan sifat poligenik.
Ilmu ini banyak menggunakan matematika dan statistika dalam menjelaskan prinsip-prinsip yang dipakai maupun dalam metodologinya. Namun demikian, penerapan ilmu ini dalam ilmu pemuliaan sangat bermanfaat dalam bidang pertanian.
• Genetika Perkembangan
• Genetika Arah-Balik (reverse genetics)
Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian.
Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics
.
C. Ekspresi Genetika
Ekspresi genetik merupakan proses penerjemahan informasi genetik (dalam bentuk urutan basa) menjadi protein, dan lebih jauh lagi: karakter. Informasi yang dibawa bahan genetik tidak bermakna apa pun apabila tidak diekspresikan menjadi fenotipe. Ekspresi genetik beserta dinamika yang mempengaruhinya dipelajari dalam genetika molekular beserta cabang-cabangnya seperti genomika, transkriptomika, proteomika, serta metabolomika.
Proses ekspresi genetik mengikuti tahapan yang sama untuk semua bentuk kehidupan, dan disebut dogma inti (central dogma) dalam genetika.
Ada tiga proses dasar yang tercakup dalam dogma inti:
• replikasi DNA,
• transkripsi DNA menjadi RNA, dan
• translasi RNA menjadi protein atau polipeptida.
 Berikut penjelasan replikasi DNA
Ø




Replikasi DNA adalah proses penggandaan molekul DNA untai ganda. Pada sel, replikasi DNA terjadi sebelum pembelahan sel. Prokariota terus-menerus melakukan replikasi DNA. Pada eukariota, waktu terjadinya replikasi DNA sangatlah diatur, yaitu pada fase S daur sel, sebelum mitosis atau meiosis I. Penggandaan tersebut memanfaatkan enzim DNA polimerase yang membantu pembentukan ikatan antara nukleotida-nukleotida penyusun polimer DNA. Proses replikasi DNA dapat pula dilakukan in vitro dalam proses yang disebut reaksi berantai polimerase (PCR).
Replikasi DNA berarti penggandaan. Ada 3 model replikasi DNA yaitu :
1. Model konservatif.
    Model ini menyatakan bahwa 2 rantai DNA bereplikasi tanpa memisahkan rantai-    rantainya.
2. Model semi konservatif.
    Model ini menyatakan bahwa 2 rantai DNA berpisah kemudian bereplikasi.
3. Model dispersi.
    Model ini menyatakan bahwa DNA terpecah menjadi potongan-potongan yang kemudian bereplikasi. Meselson dan Stahl membuktikan bahwa DNA bereplikasi sesuai model semi-konservatif.
 
Transkripsi dan Translasi
Transkripsi merupakan sintesis RNA dari salah satu rantai DNA, yaitu rantai cetakan atau sense, sedangkan rantai DNA komplemennya disebut rantai antisense.Rentangan DNA yang ditranskripsi menjadi molekul RNA disebut unit transkripsi.
RNa dihasilkan dari aktivitas enzim RNA polimerase.Transkripsi terdiri dari tiga tahap, yaitu inisiasi (permulaan), elongasi (pemanjangan), dan terminasi (pengakhiran) rantai RNA.
Inisiasi
Daerah DNA dimana RNA polimerase melekat dan mengawali transkripsi disebut promoter.Suatu promoter mencakup titik awal transkripsi dan biasanya membentang beberapa pasangan nukleotida di depan titik awal tersebut.Selain itu, promoter juga menentukan di mana transkripsi dimulai, promoter juga menentukan yang mana dari kedua untai heliks DNA yang digunakan sebagai cetakan.
Elogasi
Setelah sintesis RNA berlangsung, NDA heliks ganda terbentuk kembali dan molekul RNA baru akan dilepas dari cetakan DNA-nya.Transkripsi berlanjut pada laju kira-kira 60 nukleotida per detik pada sel eukariotik.

Terminasi
Transkripsi berlangsung sampai RNA polimerase mentranskripsi urutan DNA yang disebut terminator.Terminator merupakan suatu urutan DNA yang berfungsi menghentikan proses transkripsi.Pada sel prokariotik, transkripsi biasanya berhenti tepat pada saat RNA polimerase mencapai titik terminasi.Sedangkan pada sel eukariotik, RNA pilomerase terus melawati titik terminasi.RNA yang telah terbentuk akan terlepas dari enzim tersebut.

Translasi
Dalam proses translasi, sel menginterpretasikan suatu kode genetik menjadi protein yang sesuai.Kode geneti tersebut berupa serangkaian kodon di sepanjang molekul RNAd, interpreternya adalah RNAt.RNAt mentransfer asam amino-asam amino dari kolam asam amino di sitoplasma ke ribosom.Molekul RNAt tidak semuanya identik.Pada tiap asam amino digabungkan dengan RNAt yang sesuai oleh suatu enzim spesifik yang disebut aminoasil-RNAt sintetase ( aminoacyl-tRNA synthetase ).Ribosom memudahkan pelekatan yang spesifik antara antikodon RNAt dengan kodon RNAd selama sintesis protein.Sebuah ribosom tersusun dari dua subunit, yaitu subunit besar dan subunit kecil.Subunit ribosom dibangun oleh protein-protein dan molekul-molekul RNAr.
Tahap translasi dapat dibagi menjadi tiga tahap seperti transkripsi, yaitu inisiasi elongasi, dan terminasi.Semua tahapan ini memerlukan faktor-faktor protein yang membantu RNAd, RNAt, dan ribosom selama proses translasi.Inisiasi dan elongasi rantai polipeptida jga membutuhkan sejumlah energi yang disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip ATP.




Inisiasi
Tahap inisiasi dari translasi terjadi dengan adanya RNAd, sebuah RNAt yang memuat asam amino pertma dari polipeptida, dan dua subunit ribosom.Pertama, subunit ribosom kecil mengikatkan diri pada RNAd dan RNAt inisiator.Di dekat tempat pelekatan ribosom subunit kecil pada RNAd terdapat kodon inisiasi AUG, yang memberikan sinyal dimulainya proses translasi.RNAt inisiator, yang membawa asam amino metionin, melekat pada kodon inisiasi AUG.
Oleh karenanya, persyaratan inisiasi adalah kodon RNAd harus mengandung triplet AUG dan terdapat RNAt inisiator berisi antikodon UAC yang membawa metionin.Jadi pada setiap proses translasi, metionin selalu menjadi asam amino awal yang diingat.Triplet AUG dikatakan sebagai start codon karena berfungsi sebagai kodon awal translasi.

Elongasi
Pada tahap elongasi dari translasi, asam amino berikutnya ditambahkan satu per satu pada asam amino pertama (metionin).
Pada ribosom membentuk ikatan hidrogen dengan antikodon molekul RNAt yang komplemen dengannya.Molekul RNAr dari subunit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkanpolipeptida yang memanjang ke asam amino yang baru tiba.Pada tahap ini polipeptida memisahkan diri dari RNAt tempat perlekatannya semula, dan asam amino pada ujung karboksilnya berikatan dengan asam amino yang dibawa oleh RNAt yang baru masuk.Saat RNAd berpindah tempat, antikodonnya tetap berikatan dengan kodon RNAt.RNAd bergerak bersama-sama dengan antikodon dan bergeser ke kodon berikutnya yang akan ditranslasi.Sementara itu, RNAt yang tanpa asam amino telah diikatkan pada polipeptida yang sedang memanjang dan selanjutnya RNAt keluar dari ribosom.Langkah ini membutuhkan energi yang disediakan oleh hirolisis GTP.Kemudian RNAd bergerak melalui ribosom ke satu arah saja, kodon satu ke kodon lainnya hingga rantai polipeptidanya lengkap.




Terminasi
Tahap akhir translasi adalah terminasi.Elongasi berlanjut hingga ribosom mencapai kodon stop.Triplet basa kodon stop adalah UAA, UAG, atau UGA.Kodon stop tidak mengkode suatu asam amino melainkan bertindak sebagai sinyal untuk menghentikan translasi
D. DNA (Deoxyribonucleic Acid)
Asam deoksiribonukleat, lebih dikenal dengan DNA (bahasa Inggris: deoxyribonucleic acid), adalah sejenis asam nukleat yang tergolong biomolekul utama penyusun berat kering setiap organisme. Di dalam sel, DNA umumnya terletak di dalam inti sel.
Secara garis besar, peran DNA di dalam sebuah sel adalah sebagai materi genetik; artinya, DNA menyimpan cetak biru bagi segala aktivitas sel. Ini berlaku umum bagi setiap organisme. Di antara perkecualian yang menonjol adalah beberapa jenis virus (dan virus tidak termasuk organisme) seperti HIV (Human Immunodeficiency Virus).
DNA adalah asam nukleat yang mengandung materi genetik dan berfungsi untuk mengatur perkembangan biologis seluruh bentuk kehidupan secara seluler. DNA terdapat pada nukleus, mitokondria dan kloroplas. Perbedaan di antara ketiganya adalah: DNA nukleus berbentuk linear dan berasosiasi sangat erat dengan protein histon, sedangkan DNA mitokondria dan kloroplas berbentuk sirkular dan tidak berasosiasi dengan protein histon. Selain itu, DNA mitokondria dan kloroplas memiliki ciri khas, yaitu hanya mewariskan sifat-sifat yang berasal dari garis ibu. Hal ini sangat berbeda dengan DNA nukleus yang memiliki pola pewarisan sifat dari kedua orang tua.
Dilihat dari organismenya, struktur DNA prokariot berbeda dengan struktur DNA eukariot. DNA prokariot tidak memiliki protein histon dan berbentuk sirkular, sedangkan DNA eukariot berbentuk linear dan memiliki protein histon (Klug & Cummings 1994: 315–316; Raven & Johnson 2002: 94).
DNA memiliki struktur pilinan utas ganda yang antiparalel dengan komponen-komponennya, yaitu gula pentosa (deoksiribosa), gugus fosfat, dan pasangan basa. Pasangan basa pada DNA terdiri atas dua macam, yaitu basa purin dan pirimidin. ‘Basa purin terdiri atas adenin (A) dan guanin (G) yang memiliki struktur cincin-ganda, sedangkan basa pirimidin terdiri atas sitosin (C) dan timin (T) yang memiliki struktur cincin-tunggal. Ketika Guanin berikatan dengan Sitosin, maka akan terbentuk tiga ikatan hidrogen, sedangkan ketika Adenin berikatan dengan Timin maka hanya akan terbentuk dua ikatan hidrogen. Satu komponen pembangun (building block) DNA terdiri atas satu gula pentosa, satu gugus fosfat dan satu pasang basa yang disebut nukleotida (Lewis 2003: 176–178).
Sebuah sel memiliki DNA yang merupakan materi genetik dan bersifat herediter pada seluruh sistem kehidupan. Genom adalah set lengkap materi genetik (DNA) yang dimiliki suatu organisme dan terorganisasi menjadi kromosom. (Human Genome Project 2005: 1)
DNA mempunyai bentuk dasar yang terdiri dari:
1.Asamfosfat
2.Deoksiribosa (gula)
3.Empat basa nitrogen (Adenin, Guanin, Timin, dan Sitosin)

E. Struktur DNA
Stabilitas DNA heliks ganda ditentukan oleh susunan basa dan ikatan hidrogen yang terbentuk sepanjang rantai tersebut.karean perubahan jumlah hidrogen ini, tidak mengehrankan bahwa ikatan C=G memerlukan tenaga yang lebih besar untuk memisahkannya.
DNA merupakan makromolekul yang struktur primernya adalah polinukleotida rantai rangkap berpilin.Sturktur ini diibaratkan sebagai sebuah tangga.Anak tangganya adalah susunan basa nitrogen, dengan ikatan A-T dan G-C.Kedua “tulang punggung tangganya” adalah gula ribosa.Antara mononukleotida satu dengan yang lainnya berhubungan secara kimia melalui ikatan fosfodiester.
DNA heliks ganda yang panjangnya juga memiliki suatu polaritas.Polaritas heliks ganda berlawanan orientasi satu sama lain.Kedua rantai polinukleotida DNA yang membentuk heliks ganda berjajar secara antipararel.
Pada tahun 1953, Frances Crick dan James Watson menemukan model molekul DNA sebagai suatu struktur heliks beruntai ganda, atau yang lebih dikenal dengan heliks ganda Watson-Crick.DNA merupakan makromolekul polinukleotida yang tersusun atas polimer nukleotida yang berulang-ulang, tersusun rangkap, membentuk DNA haliks ganda dan berpilin ke kanan.
Setiap nukleotida terdiri dari tiga gugus molekul, yaitu :
- Gula 5 karbon (2-deoksiribosa)
- basa nitrogen yang terdiri golongan purin yaitu adenin (Adenin = A) dan guanin (guanini = G), serta golongan pirimidin, yaitu sitosin (cytosine = C) dan timin (thymine = T)
- gugus fosfat
Berikut susunan struktur kimia komponen penyusun DNA :
Baik purin ataupun pirimidin yang berkaitan dengan deoksiribosa membentuk suatu molekul yang dinamakan nukleosida atau deoksiribonukleosida yang merupakan prekursor elementer untuk sintesis DNA.
Prekursor merupakan suatu unsur awal pembentukan senyawa deoksiribonukleosida yang berkaitan dengan gugus fosfat. DNA tersusun dari empat jenis monomer nukleotida.
Keempat basa nitrogen nukleotida di dalam DNA tidak berjumlah sama rata.Akan tetapi, pada setiap molekul DNA, jumlah adenin (A) selalu sama dengan jumlah timin (T). Demikian pula jumlah guanin (G) dengan sitisin(C) selalu sama.Fenomena ini dinamakan ketentuan Chargaff.Adenin (A) selalu berpasangan dengan timin (T) dan membentuk dua ikatan hidrogen (A=T), sedagkan sitosin (C) selalu berpasangan dengan guanin (G) dan membentuk 3 ikatan hirogen (C = G).

F. RNA (ribonucleic acid)
Asam ribonukleat (bahasa Inggris:ribonucleic acid, RNA) senyawa yang merupakan bahan genetik dan memainkan peran utama dalam ekspresi genetik. Dalam dogma pokok (central dogma) genetika molekular, RNA menjadi perantara antara informasi yang dibawa DNA dan ekspresi fenotipik yang diwujudkan dalam bentuk protein.

G. Struktur RNA
Struktur dasar RNA mirip dengan DNA. RNA merupakan polimer yang tersusun dari sejumlah nukleotida. Setiap nukleotida memiliki satu gugus fosfat, satu gugus gula ribosa, dan satu gugus basa nitrogen (basa N). Polimer tersusun dari ikatan berselang-seling antara gugus fosfat dari satu nukleotida dengan gugus gula ribosa dari nukleotida yang lain.
Perbedaan RNA dengan DNA terletak pada satu gugus hidroksil tambahan pada cincin gula ribosa (sehingga dinamakan ribosa). Basa nitrogen pada RNA sama dengan DNA, kecuali basa timin pada DNA diganti dengan urasil pada RNA. Jadi tetap ada empat pilihan: adenin, guanin, sitosin, atau urasil untuk suatu nukleotida.



Selain itu, bentuk konformasi RNA tidak berupa pilin ganda sebagaimana DNA, tetapi bervariasi sesuai dengan tipe dan fungsinya.
Adapun RNA hadir di alam dalam berbagai macam/tipe. Sebagai bahan genetik, RNA berwujud sepasang pita (Inggris double-stranded RNA, dsRNA). Genetika molekular klasik mengajarkan adanya tiga tipe RNA yang terlibat dalam proses sintesis protein:
• RNA-kurir (bahasa Inggris: messenger-RNA, mRNA),
• RNA-ribosom (bahasa Inggris: ribosomal-RNA, rRNA),
• RNA-transfer (bahasa Inggris: transfer-RNA, tRNA).
Pada akhir abad ke-20 dan awal abad ke-21 diketahui bahwa RNA hadir dalam berbagai macam bentuk dan terlibat dalam proses pascatranslasi. Dalam pengaturan ekspresi genetik orang sekarang mengenal RNA-mikro (miRNA) yang terlibat dalam “peredaman gen” atau gene silencing dan small-interfering RNA (siRNA) yang terlibat dalam proses pertahanan terhadap serangan virus.
Adapun fungsi RNA yaitu, pada sekelompok virus (misalnya bakteriofag), RNA merupakan bahan genetik. Ia berfungsi sebagai penyimpan informasi genetik, sebagaimana DNA pada organisme hidup lain. Ketika virus ini menyerang sel hidup, RNA yang dibawanya masuk ke sitoplasma sel korban, yang kemudian ditranslasi oleh sel inang untuk menghasilkan virus-virus baru.
Namun demikian, peran penting RNA terletak pada fungsinya sebagai perantara antara DNA dan protein dalam proses ekspresi genetik karena ini berlaku untuk semua organisme hidup. Dalam peran ini, RNA diproduksi sebagai salinan kode urutan basa nitrogen DNA dalam proses transkripsi. Kode urutan basa ini tersusun dalam bentuk ‘triplet’, tiga urutan basa N, yang dikenal dengan nama kodon. Setiap kodon berelasi dengan satu asam amino (atau kode untuk berhenti), monomer yang menyusun protein. Lihat ekspresi genetik untuk keterangan lebih lanjut.
Penelitian mutakhir atas fungsi RNA menunjukkan bukti yang mendukung atas teori ‘dunia RNA’, yang menyatakan bahwa pada awal proses evolusi, RNA merupakan bahan genetik universal sebelum organisme hidup memakai DNA.



H. Perbedaan DNA dan RNA
Meskipun banyak memiliki persamaan dengan DNA, RNA memiliki perbedaan dengan DNA, antara lain yaitu(Poedjiati, 1994):
1. Bagian pentosa RNA adalah ribosa, sedangkan bagian pentosa DNA adalah
dioksiribosa.
2. Bentuk molekul DNA adalah heliks ganda, bentuk molekul RNA berupa
rantai tunggal yang terlipat, sehingga menyerupai rantai ganda.
3. RNA mengandung basa adenin, guanin dan sitosin seperti DNA tetapi tidak
mengandung timin, sebagai gantinya RNA mengandung urasil.
4. Jumlah guanin dalam molekul RNA tidak perlu sama dengan sitosin,
demikian pula jumlah adenin, tidak perlu sama dengan urasil.

Selain itu perbedaan RNA dengan DNA yang lain adalah dalam hal(Suryo,
1992):
1. Ukuran dan bentuk
Pada umumnya molekul RNA lebih pendek dari molekul DNA. DNA berbentuk double helix, sedangkan RNA berbentuk pita tunggal. Meskipun demikian pada beberapa virus tanaman, RNA merupakan pita double namun tidak terpilih sebagai spiral.
2. Susunan kimia
Molekul RNA juga merupakan polimer nukleotida, perbedaannya dengan DNA yaitu:
a. Gula yang menyusunnya bukan dioksiribosa, melainkan ribosa.
b. Basa pirimidin yang menyusunnya bukan timin seperti DNA, tetapi
urasil.






3. Lokasi
DNA pada umumnya terdapat di kromosom, sedangkan RNA tergantung dari macamnya, yaitu:
a. RNA d(RNA duta), terdapat dalam nukleus, RNA d dicetak oleh salah
satu pita DNA yang berlangsung didalam nukleus.
b. RNA p(RNA pemindah) atau RNA t(RNA transfer), terdapat di
sitoplasma.
c. RNA r(RNA ribosom), terdapat didalam ribosom.

4. Fungsinya
DNA berfungsi memberikan informasi atau keterangan genetik, sedangkan fungsi RNA tergantung dari macamnya, yaitu:
a. RNA d, menerima informasi genetik dari DNA, prosesnya dinamakan
transkripsi, berlangsung didalam inti sel.
b.RNA t, mengikat asam amino yang ada di sitoplasma.
c. RNA t, mensintesa protein dengan menggunakan bahan asam amino,
proses ini berlangsung di ribosom dan hasil akhir berupa polipeptida.
Ada beberapa cara untuk menentukan DNA dan RNA, yaitu(Frutan and Sofia, 1968):
1. Jaringan hewan dan alkali hangat RNA akan terpecah menjadi komponen
komponen nukleotida yang larut dalam asam. DNA sulit dipecah atau
dirusak oleh alkali.
2. Metode Schnider
Jaringan dan asam trikloro asetat panas dan diperkirakan DNA dapat diuji
oleh reaksi kalorimetri dengan difenilanin, yang mana akan bereaksi dengan
purin dioksiribosa dan tidak bereaksi dengan purin ribosa.




3. Metode Feligen
Fuchsin sulfurous acid akan berwarna merah dengan DNA, dan tidak
dengan RNA. Reaksi ini diterapkan untuk mempelajari distribusi RNA dan
DNA didalam bagian-bagian sel.
4. Secara Spektroskopi
Pengaukuran absorbsi cahaya oleh RNA dan DNA pada 260nm dimana
spektra cincin purin dan pirimidin asam nukleat menunjukkan maksimal.
Tiga bentuk utama RNA yang terdapat didalam sel adalah
mRNA(messenger RNA), rRNA(ribosa RNA), dan tRNA(transfer RNA).
Tiap bentuk RNA ini mempunyai berat molekul dan komposisi yang
berlainan, tetapi khas untuk tiap macam bentuk RNA.
Semua RNA terdiri dari rantai tunggal poliribonukleotida. Pada sel bakteri,
hampir semua RNA ada di dalam sitoplasma. Disel hati kira-kira 11%
terdapat dalam nukleus(terutama mRNA), sekitar 15% dalam mitokondria,
lebih dari 50% dalam ribosom, dan kira-kira 24% dalam strosol.

Tidak ada komentar:

Posting Komentar